Planar cone-beam computed tomography with a flat-panel detector

Seung Ho Kim¹, Hanbeye Youn³, Dae Cheon Kim¹, Soohwa Kam¹, Hosang Jeon³, and Ho Kyung Kim¹ ²

¹School of Mechanical Engineering, Pusan National University, Busan 609-735, Republic of Korea
²Center for Advanced Medical Engineering Research, Pusan National University, Busan 609-735, Republic of Korea
³Department of Radiation Oncology, Pusan National University Yangsan Hospital, Yangsan 616-770, Republic of Korea

Correspondence: Radiation Imaging Laboratory, BML, Pusan National University, Busan 609-735, Korea. E-mail: seungho@pusan.ac.kr

This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea governments (MSIP) (No. 2013M2A2A904613 and No. 2014R1A2A101004416).

Research motivation
- X-ray cone-beam computed tomography (CBCT) has been widely used for industrial nondestructive testing and quality control of products.
- Although improvement in the density of multilayer printed circuit boards (PCBs) and electronic chips/packages highly demands precise defect-detecting techniques, the typical CBCT scanning is impractical for the PCB inspection because of its thin slab geometry.

Objectives
- For the PCB inspection, we develop a bench-top planar CT (pCT) system, which adopts the "tomosynthesis" technique that can produce cross-sectional images parallel to the axis of rotation for a limited angular range.
- We evaluate the imaging performance of the pCT system in comparisons with the conventional CBCT technique. The imaging performance includes the modulation-transfer function (MTF), noise-power spectrum (NPS), noise-equivalent number of quanta (NEQ), artifact spread-function (ASF), and signal difference-to-noise ratio (SDNR).

Materials and Methods

- System description

 - X-ray source
 - Filtration: 1 mmAl
 - Nominal focal-spot size: 35 μm
 - Max. voltage: 50 kVp
 - Max. beam current: 1 mA

 - Detector
 - Scintillator: 33.91 mg/cm²
 - Photodiode pixel format: 1548 x 1032 pixels
 - Pixel pitch: 99 μm
 - Max. frame rate: 20 fps

 - Motions
 - Max. ranges: x-y-z directions 300 – 600 – 75 mm
 - Max. source-to-detector distance: 656.2 mm

- NEQ(f₀, f₁, f₂) = \(f \theta_{tot} \)
- MTF(f₀, f₁, f₂) = \(f \theta_{tot} \)
- NPS(f₀, f₁, f₂) = \(f \theta_{tot} \)

Reconstruction algorithm
- CBCT: FBP + Hanning filter
- pCT: FDK algorithm + apodization filter, slice thickness filter

Results
- MTF
 - Ideal MTF implies the detector MTF considering the magnification factor of 2.
 - The MTF measured from the CBCT technique (simply, CBCT MTF) is lower than the ideal MTF because of the CBCT reconstruction operations.
 - Surprisingly, the pCT technique shows a higher MTF performance (simply, pCT MTF) than the ideal MTF in the frequencies less than 5.5 mm⁻¹.
 - The characteristic of the pCT MTF can be explained by the measured LSF.

 - Both the CBCT and pCT MTFs are nearly independent of the given x-ray energies (40-50 kVp).

- Reconstruction image
 - CBCT reconstruction image shows a better depth resolution than pCT.

- NPS and NEQ
 - The CBCT incorporating the Hanning filter shows the low-pass filtering trend in the NPS results, and the spectral densities increases with increasing the applied voltage.
 - Shape and properties of the pCT NPS are similar to those of the CBCT NPS, but the bandwidth of the pCT NPS is wider than that of the CBCT NPS.
 - Spectral densities of the pCT NPS are larger than those of the CBCT NPS because of the high band-limited MTF characteristic.
 - The characteristics of NEQ follow those of NPS except that the energy dependencies are opposite. The pCT NEQ performance outperforms the CBCT.

- Evaluation in various scan angle
 - The pCT MTF converges to the CBCT MTF as the scan angle is increased.
 - The spectral densities of the pCT NPS decreases with increasing scan angle while those of the NEQ increases.

- Discussion and conclusion
 - According to the Fourier metric performance results, the pCT shows a better MTF but a worse NPS than the CBCT.
 - The depth resolution of the pCT enhances but the SDNR degrades with the increasing scan angle.
 - The scanning angular range of the pCT system should be optimized accounting for what size and contrast are investigated.