CASCADED MODEL ANALYSIS OF PIXELATED SCINTILLATOR IMAGING DETECTORS

Ho Kyung Kim, Seung Man Yun and Chang Hwy Lim

June, 7, 2007

School of Mechanical Engineering
Pusan National University
Republic of Korea
Conventional DR detectors

• Direct-detection scheme
 ▫ High-resolution imaging capability (high MTF)
 ▫ But, noise-aliasing due to the high MTF
 ▫ Lower X-ray sensitivity (with the conventional photoconductor materials, e.g., a-Se)

• Indirect-detection scheme
 ▫ Higher X-ray sensitivity (e.g., CsI:Tl)
 ▫ Relatively poorer MTF

• Best way: use of a scintillator with band-limited MTF property
 ▫ Maintaining higher X-ray sensitivity of a scintillator
 ▫ Avoiding noise-aliasing due to the band-limited MTF

• Pixelated scintillator?
How we can realize a pixelated scintillator design?

- Growing onto pixel-patterned substrates (thermal evaporation)
- Filling scintillation materials into pixel-structured mold
Objective

- Investigating a feasibility of the pixelated scintillator, theoretically
 - Using the *cascaded linear-systems transfer theory*
 - Predicting detective quantum efficiency (DQE), which is an essential metric representing an image quality of an imaging system

\[
DQE(u,v) = \frac{\text{Fluence} \times \text{System Gain}^2 \times \text{MTF}^2_{sys}(u,v)}{\text{NPS}(u,v)} = \frac{\bar{q}_0 G^2 T^2_{sys}(u,v)}{\text{NPS}(u,v)} = \frac{T^2_{sys}(u,v)}{\bar{q}_0 \text{NNPS}(u,v)}
\]

- Developing a DQE formalism of the pixelated scintillator detector
 - Numerical simulation with respect to various design parameters; pixel pitch, fill factor, additive noise ...
 - Comparing with the conventional scintillator-based detectors with various MTF properties
Cascade model of the conventional scintillator imager

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
<th>Symbol</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Incident X-ray</td>
<td>q_0</td>
<td>Uniform distribution</td>
</tr>
<tr>
<td>1</td>
<td>Quantum detection</td>
<td>$g_1 = A_Q$</td>
<td>Binomial selection</td>
</tr>
<tr>
<td>2</td>
<td>Quantum amplification</td>
<td>$g_2 = A_M$</td>
<td>Binomial selection</td>
</tr>
<tr>
<td>3</td>
<td>Quantum scattering</td>
<td>T_3</td>
<td>Stochastic blurring</td>
</tr>
<tr>
<td>4</td>
<td>Quantum conversion</td>
<td>$g_4 = A_D$</td>
<td>Binomial selection</td>
</tr>
<tr>
<td>5</td>
<td>Aperture integration</td>
<td>T_5</td>
<td>Deterministic blurring</td>
</tr>
<tr>
<td>6</td>
<td>Sampling</td>
<td>III</td>
<td>Deterministic process</td>
</tr>
<tr>
<td>7</td>
<td>Additive noise</td>
<td>σ_{add}</td>
<td>Deterministic process</td>
</tr>
</tbody>
</table>
• DQE of the conventional scintillator imager

\[
\text{DQE}(\rho) = \sum_{k=0}^{\infty} \bar{q}_0 a_{\text{scn}}^4 A_Q A_M A_D \left[1 + A_D \left(\frac{A_M}{I_{\text{scn}}} - 1 \right) T_{\text{scn}}^2(\rho \pm \frac{k}{d_{\text{pix}}}) \right] T_{\text{pix}}^2(\rho \pm \frac{k}{d_{\text{pix}}}) + d^2 \sigma^2_{\text{add}}
\]

Fluence \quad \text{System gain} \quad \text{System MTF}

Noise power spectrum \quad \text{Additive electronic noise}
Cascaded modeling of the pixelated scintillator imager

<table>
<thead>
<tr>
<th>stage</th>
<th>description</th>
<th>symbol</th>
<th>process</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Incident X-ray</td>
<td>q_0</td>
<td>uniform distribution</td>
</tr>
<tr>
<td>1</td>
<td>Aperture integration</td>
<td>T_1</td>
<td>deterministic blurring</td>
</tr>
<tr>
<td>2</td>
<td>Sampling</td>
<td>III</td>
<td>deterministic process</td>
</tr>
<tr>
<td>3</td>
<td>Quantum detection</td>
<td>$g_3 = A_Q$</td>
<td>binomial selection</td>
</tr>
<tr>
<td>4</td>
<td>Quantum amplification</td>
<td>$g_4 = A_M$</td>
<td>binomial selection</td>
</tr>
<tr>
<td>5</td>
<td>random redistribution</td>
<td>T_5</td>
<td>statistical relocation</td>
</tr>
<tr>
<td>6</td>
<td>Quantum conversion</td>
<td>$g_6 = A_D$</td>
<td>binomial selection</td>
</tr>
<tr>
<td>7</td>
<td>Aperture integration</td>
<td>T_7</td>
<td>deterministic blurring</td>
</tr>
<tr>
<td>8</td>
<td>Sampling</td>
<td>III</td>
<td>deterministic process</td>
</tr>
<tr>
<td>9</td>
<td>Additive noise</td>
<td>σ_{add}</td>
<td>deterministic process</td>
</tr>
</tbody>
</table>
• Stage 0: Incident X-ray
 ▫ Signal $\overline{q}_0 = \overline{q}_0$
 ▫ NPS $W_0(p) = \overline{q}_0$

• Stage 1: Screen aperture integration
 ▫ Signal $\overline{q}_1 = \overline{q}_0 a_{scn}^2$
 ▫ NPS $W_1(p) = W_0(p) a_{scn}^4 \text{sinc}^2(\pi a_{scn} p) = \overline{q}_0 a_{scn}^4 \text{sinc}^2(\pi a_{scn} p)$

• Stage 2: X-ray Sampling
 ▫ Signal $\overline{q}_2 = \overline{q}_1 \times \frac{1}{d_{scn}^2} = \overline{q}_0 a_{scn}^2 \frac{1}{d_{scn}^2} = \gamma_{scn} \overline{q}_0$
 ▫ NPS $W_2(p) = \frac{a_{scn}^4}{d_{scn}^4} \sum_{k=0}^{\infty} q_0 \text{sinc}^2\left(\pi a_{scn} (p \pm \frac{k}{d_{scn}})\right) = \frac{a_{scn}^4}{d_{scn}^4} \overline{q}_0 \left(\frac{d_{scn}}{a_{scn}}\right)^2 = \gamma_{scn} \overline{q}_0$
• Stage 3: Quantum detection
 ▪ Signal \(\bar{q}_3 = \bar{q}_2 \times A_Q = \gamma_{scn} \bar{q}_0 A_Q \)
 ▪ NPS \(W_3(\rho) = A_Q^2 \left[W_2(\rho) - \bar{q}_2 \right] + \bar{q}_2 A_Q = \gamma_{scn} \bar{q}_0 A_Q \)

• Stage 4: Quantum amplification
 ▪ Signal \(\bar{q}_4 = \bar{q}_3 \times A_M = \gamma_{scn} \bar{q}_0 A_Q A_M \)
 ▪ NPS \(W_4(\rho) = A_M^2 W_3(\rho) + \bar{q}_3 \sigma_M^2 = \gamma_{scn} \bar{q}_0 A_Q A_M^2 + \gamma_{scn} \bar{q}_0 A_Q A_M \left(\frac{1}{I_M} - 1 \right) = \frac{\gamma_{scn} \bar{q}_0 A_Q A_M^2}{I_M} \)

• Stage 5: Random redistribution
 ▪ Signal \(\bar{q}_5 = \bar{q}_4 = \gamma_{scn} \bar{q}_0 A_Q A_M \)
 ▪ NPS \(W_5(\rho) = \left[W_4(\rho) - \bar{q}_4 \right] \text{sinc}^2 (\pi a_{scn} \rho) + \bar{q}_4 = \gamma_{scn} \bar{q}_0 A_Q A_M \left[1 + \left(\frac{A_M}{I_M} - 1 \right) \text{sinc}^2 (\pi a_{scn} \rho) \right] \)
• Stage 6: Quantum conversion

 ▫ Signal \[q_6 = q_5 \times A_D = \gamma_{\text{scn}} q_0 A_Q A_M A_D \]

 ▫ NPS \[W_6(p) = A_D^2 W_5(p) + q_5 \sigma_D^2 = \gamma_{\text{scn}} q_0 A_Q A_M A_D \left[1 + A_D \left(\frac{A_M}{I_M} - 1 \right) \text{sinc}^2 (\pi a_{\text{scn}} p) \right] \]

• Stage 7: Aperture integration

 ▫ Signal \[q_7 = q_6 \times a_{\text{pix}}^2 = \gamma_{\text{scn}} a_{\text{pix}}^2 q_0 A_Q A_M A_D \]

 ▫ NPS \[W_7(p) = \gamma_{\text{scn}} a_{\text{pix}}^4 q_0 A_Q A_M A_D \left[1 + A_D \left(\frac{A_M}{I_M} - 1 \right) \text{sinc}^2 (\pi a_{\text{scn}} p) \right] \text{sinc}^2 (\pi a_{\text{pix}} p) \]
• Stage 8: Sampling
 ▫ Signal \(\bar{q}_8 = \bar{q}_7 = \gamma_{\text{scn}} A_{\text{pix}}^2 \bar{q}_0 A_Q A_M A_D \)
 ▫ NPS
 \[W_8(p) = \gamma_{\text{scn}} A_{\text{pix}}^4 \bar{q}_0 A_Q A_M A_D \left[1 + A_D \left(\frac{A_M}{I_M} - 1 \right) \sum_{k=0}^{\infty} \text{sinc}^2 \left(\pi a_{\text{scn}}(p \pm \frac{k}{d_{\text{pix}}}) \right) \text{sinc}^2 \left(\pi a_{\text{pix}}(p \pm \frac{k}{d_{\text{pix}}}) \right) \right] \]

• Stage 9: Additive noise
 ▫ Signal \(\bar{q}_9 = \bar{q}_8 = \gamma_{\text{scn}} A_{\text{pix}}^2 \bar{q}_0 A_Q A_M A_D \)
 ▫ NPS
 \[W_9(p) = W_8(p) + d^2 \sigma_{\text{add}}^2 \]
• DQE of the pixelated scintillator imager

\[
DQE(\rho) = \frac{q_0 (\gamma_{\text{scn}} a_{\text{pix}}^2 A_Q A_M A_D)^2 T_{\text{scn}}^2(\rho) T_{\text{pix}}^2(\rho)}{1 + A_D \left(\frac{A_M}{I_{\text{scn}}} - 1 \right) \sum_{k=0}^{\infty} \text{sinc}^2 \left(\pi a_{\text{scn}}(\rho \pm \frac{k}{d_{\text{pix}}}) \right) \text{sinc}^2 \left(\pi a_{\text{pix}}(\rho \pm \frac{k}{d_{\text{pix}}}) \right) + d^2 \sigma_{\text{add}}^2}
\]
Model validation

• Experimental condition
 • 60 kVp, 17 mR

<table>
<thead>
<tr>
<th>Microfocus X-ray source</th>
<th>L8121-01, Hamamatsu Tungsten anode 200 µm beryllium window 1mmAl add-filtration</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMOS photodiode array</td>
<td>C7943, Hamamatsu 2400 x 2400 array format 50 µm pixel pitch 79% fill factor</td>
</tr>
<tr>
<td>Scintillator</td>
<td>Columnar structured CsI:TI 200 µm thickness ~80% packing density</td>
</tr>
</tbody>
</table>

• Degraded DQE at lower frequencies: due to the pixelated design (X-ray quanta sampling)
• Improved DQE at higher frequencies
Numerical simulation

- Default parameters
 - Providing an ideal performance of an imager

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence of X-ray</td>
<td>$q_0 = 1 \times 10^6$</td>
</tr>
<tr>
<td>Quantum absorption efficiency of scintillator</td>
<td>$A_Q = 1$</td>
</tr>
<tr>
<td>Average conversion efficiency of scintillator</td>
<td>$A_M = 1000$</td>
</tr>
<tr>
<td>Quantum efficiency of photodiode</td>
<td>$A_D = 1$</td>
</tr>
<tr>
<td>Additive electronic noise</td>
<td>$\sigma_{add} = 10^3$</td>
</tr>
<tr>
<td>Scintillator and pixel pitch</td>
<td>$d = 50\mu m$</td>
</tr>
<tr>
<td>Scintillator and pixel Fill factor</td>
<td>$\gamma = 80%$</td>
</tr>
<tr>
<td>Scintillator and pixel aperture</td>
<td>$a = \sqrt{\gamma d^2}$</td>
</tr>
</tbody>
</table>
Effect of a pixel pitch

Due to X-ray sampling

DQE

Spatial Frequency (mm$^{-1}$)

- $d = 200 \, \mu m$
- $d = 100 \, \mu m$
- $d = 50 \, \mu m$
- $d = 30 \, \mu m$
Effect of a pixel fill factor

- DQE at the lower frequency is gradually further decreased as the fill factor decreases due to the relatively enhanced additive noise term.
Comparison with the various conventional imagers

\[MTF(\rho) = \frac{1}{1 + k\rho^2} \]

- \(k \) = the experimental fitting parameter
 - 0.06 (LanexTM Fine)
 - 0.43 (LanexTM Regular)
 - 0.69 (CsI 554\textmu m)
 - 1.25 (LanexTM Fast)
Effect of the additive noise

- 80% fill factor, 50 μm pitch, 0.43 (Lanex™ Regular),

- Pixelated design is relatively immune to the additional electronic noise
Conclusion

• Pixelated scintillator imagers
 ▫ Degradation of DQE at lower spatial frequencies due to the X-ray quanta sampling process
 ▫ However, maintaining DQE properties even in the higher frequency band due to the band-limited MTF properties
 ▫ Relatively strong to the additive electronic noise
 ▫ Appropriate to the high-sensitivity and -resolution imaging systems, and imagers with small pixel pitch
 e.g., Mammography, Intra-oral imaging etc.

• Based on this study, we propose a better design of the scintillator-based imager: Partially pixelated scintillator