Projection Radiography

Ho Kyung Kim
hokyung@pusan.ac.kr
Pusan National University

Projection radiography

- Most commonly used method of medical imaging utilizing x rays, called conventional radiography
- Regarding shadow cast by a semitransparent body illuminated by x rays
- Representing a projection of the 3-D volume of the body onto a 2-D imaging surface
 ⇒ limiting depth resolution; hence limiting contrast
 (conspicuity: "hide" important lesions)
- Representing the “transmission” of the x-ray beam thru the patient, weighted by the integrated loss of beam E due to scattering & absorption in the body

- To screen for pneumonia, heart disease, lung disease, bone fractures, cancer & vascular disease

- Overall imaging conditions of projection radiographic system
 - Exposure time ~0.1 sec
 - Image size 14 × 17 in.
 - Exposure level 30 mR of a chest radiograph (= 1/10 of the annual bgn dose)
Instrumentation

- X-ray tube
- Filters/collimators
- Grids
- Detectors
X-ray tubes

- **Cathode assembly**
 - Filament
 - Thin thoriated* tungsten wire
 (*thoriate: add thorium or thorium dioxide to increase thermionic flow)
 - Typ. filament current = 3–5 A at 6–12 V
 - Thermonic emission of e^-'s, accelerated toward the *anode* producing tube current, referred to as the **mA** (typ. 50–1,200 mA)
 - Filament current \rightarrow heat (resistance) \rightarrow # of discharged e^-'s \rightarrow tube current
 - Focusing cup
 - Small depression in the cathode containing the filament
 - To help focus the e^- beam toward a particular spot on the anode
 \Rightarrow *Focal point*: a bevelled edge of the anode disk
• Anode

– Made from molybdenum on which a rhenium-alloyed tungsten target is coated
– Mo in the target area for mammography x-ray tube
– Tube voltage kVp (typ. 30–150 kVp)
– Generating “characteristic” & “bremsstrahlung” x rays
– ~1% of conversion efficiency (~99% → heat)

– Stator electromagnets induce the rotors to rotate the anode
 • To avoid melting the anode target area
 • 3,200–3,600 rpm

• Exposure \(\iff mA \times s \) (exposure time) = mAs during the applied kVp

– Controlled by fixed timer circuit or automatic exposure control (AEC) timer
 • Controlling the overall exposure determined by the duration of the applied kVp

– Fixed timer circuit
 • Silicon-controlled rectifier (SCR) switch timed by a microprocessor
 • Timing accuracy ~ 0.001 s
 • Radiologists control the “mA” & the exposure “time” directly, hence determining the “mAs”

– AEC timer
 • 5-mm-thick parallel plate ionization chamber placed between the patient table & the imager
 • Voltage signal from ion chamber triggers the SCR, which shuts off the tube voltage
 • Radiologists control the “mAs” & the exposure time is determined automatically by the AEC
 • Set max. time to prevent accidental overdose due to that AEC circuit malfunctions or the ion chamber is missing or incorrectly positioned
Filtration & restriction

- **Filtration**
 - **Process of absorbing low-E x-ray photons before they enter the patient**
 - X-ray spectrum: polyenergetic, bremsstrahlung + characteristic radiations
 - Very “undesirable” for low-E photons to enter the body
 - Almost entirely absorbed w/i the body → contributing to “patient dose” but not the image
 - **Inherent filtering**
 - Tungsten anode itself
 - Glass housing of the x-ray tube & the dielectric oil
 - Accentuated over time due to the aging of x-ray tubes (vaporization of W filaments)
 - **Added** filtering
 - Placing metal in the x-ray beam outside of the tube
 - Al (1–2 mm thick) typically
 - Higher-E systems: Cu + Al (to attenuate the 8 keV characteristic x rays from Cu)
 - Additional 1.0 mm Al/Eq of filtering by the “silvered mirror” placed w/i the “collimator”
 - **Beam hardening**
 - The increase in the beam’s “effective energy” as a progressive shift in the position of the spectrum “to the right” due to filtering

Note that the National Council on Radiation Protection & Measurements (NCRP) recommends a min. filtration of 2.5 mm Al/Eq at the exit port of the x-ray tube for the reduction of patient dose.
Example

For radiography systems operating above 70 kVp, the NCRP recommends a min. total filtration of 2.5 mm Al/Eq at the exit port of the x-ray tube. Although such filtration reduces high-energy as well as low-energy x-rays, thus requiring longer exposure times to properly expose the x-ray film, the overall dose to the patient is reduced because of the reduction in low-energy x-rays are absorbed almost entirely by the patient. At 80 kVp, what thickness of Cu would provide 2.5 mm Al/Eq of filtration? (Note: μ/ρ (Al) = 0.2015 cm²/g & μ/ρ (Cu) = 0.7519 cm²/g at 80 kVp; ρ (Al) = 2.699 g/cm³, ρ (Cu) = 8.960 g/cm³)

• Restriction beam
 – Process of absorbing the x rays outside a certain field of view
 – To avoid exposing parts of the patient that need not be imaged
 – To help reduce the deleterious effects of “Compton scatter”
 – Basic kinds of beam restrictors
 1. Diaphragms
 – Flat pieces of lead w/ holes
 – Simple & inexpensive
 – Fixed geometry used in dedicated systems that have only on purpose (e.g., chest imaging)
 2. Cones or cylinders
 – Fixed geometry & better performance
 3. Collimators
 – Variable diaphragms comprised of movable pieces of lead
 – Expensive but flexible
 – Usually two collimators: one near the tube & one farther away from the tube
 » “Mirror” btwn them to illuminate the FOV w/ an alignment grid
Compensation filters & contrast agents

- Attenuation: the process by which x rays are absorbed or redirected (scattered) w/i the body or other objects in the FOV
 - Different amounts of attenuation in body tissues \(\sim \mu, E \)
 \(\rightarrow \) differential attenuation \(\rightarrow \) contrast
- Sometimes need to artificially change the natural attenuation of the body prior to detecting x rays

- Compensation filters
 - Used when difficult to obtain images of subjects having big differences in attenuation over area because of the limited dynamic range of x-ray detectors
 - Specially shaped Al or leaded-plastic object for an x-ray detector w/ smaller dynamic range
 - Placed btwn the x-ray source & the patient or in some cases btwn the patient & the detector
- Contrast agents
 - Used when difficult to visualize different soft tissues due to insufficient intrinsic contrast
 - Chemical compounds to increase x-ray absorption w/i an anatomical region

- Utilizing the *K-edge absorption* effect
 - Leading to very high *differential* absorption btwn the contrast agent & the surrounding tissues; enhancing contrast

- Iodine (Z = 53): $E_K = 33.2$ keV
 - Intravascular injection or ingestion
 - Blood vessels, heart chambers, tumors, infections, kidneys, bladder

- Barium (Z = 56): $E_K = 37.4$ keV
 - Administered as a chalky "milkshake"
 - Gastrointestinal tract

- Air itself
 - "Opposite" type of contrast to that of I & Ba
 - e.g., "inflated" lungs
Grids, airgaps, & scanning slits

- Scattering process
 - Causing a random “fog” throughout the image; thereby reducing the contrast of image

- Reduction methods: grids, airgaps, & scanning slits

- Grids
 - Thin strips of Pb alternating w/ highly transmissive interspace mat’l (e.g., Al or plastic)
 - Linear, focused grid

 ![Diagram of a grid](image)

 - Grid ratio
 - A measure of the effectiveness of the grid for reducing scatter
 - \(\text{grid ratio} = \frac{h}{b} \)
 - \(h \) = height of the lead strips
 - \(b \) = spacing btwn the lead strips
 - 6:1–16:1 in conventional radiographic systems
 - Down to 2:1 in mammography systems
 - Higher grid ratio for thick body parts (e.g., abdomen or chest)
 - Lower grid ratio for thin body parts (e.g., extremities)

 - Grid spacing
 - Generally reported using its reciprocal, known as grid frequency
 - 60 cm\(^{-1}\) for conventional radiographic systems
 - 80 cm\(^{-1}\) for mammography systems
Note that grids with higher grid ratios (tall lead strips or fine lead strip spacing) are more capable of stopping off-axis radiation => Requiring higher patient dose to maintain a high-quality image.

Consider the tradeoff between primary & scatter radiations:

- **Grid conversion factor (GCF)**
 - Characterizing the amount of additional exposure required for a particular grid
 - \[GCF = \frac{\text{mAs with the grid}}{\text{mAs without the grid}} \]
 - Ranging from 3 to 8
 - Use a grid when the tube voltage > 60 kVp (isotropic scattering for low-E photons); when imaging a body part thicker than 10 cm

- **Stationary grids**
 - Introducing visible artifacts

- **Potter-Bucky diaphragm**
 - Moving the grid 2 to 3 cm during exposure in a linear or circular path

- **Airgaps**
 - Leaving an airgap between the patient & the detector \(\rightarrow\) an effective means of scatter rejection
 - Cons:
 - Increased geometric magnification
 - Blurring or unsharpness due to x-ray focal-spot size effect

- **Scanning slits**
 - Placed in front of and/or in back of the patient
 - Providing greater than 95% scatter reduction
 - More complex & costly system
 - Longer exposure times
Film-screen detectors

Direct exposure of x-rays to a photographic film
→ About 1 to 2% of the x rays are stopped by the film (⇒ detection efficiency)
→ Requiring an unnecessarily large x-ray dose to the patient
→ A very inefficient way to create a photograph
→ Use of intensifying screens on both sides of the film, but an additional image blurring due to light scattering should be considered

• Intensifying screens
 – Base
 • Provided for mechanical stability
 • Somewhat flexible to be pushed tightly against the film
 • Typ. made of polyester plastic
 – Reflective layer
 • Reflecting light from the phosphor back into the film rather than getting lost in the base
 • Typ. about 25 μm thick
 • Made of magnesium oxide (MgO) or titanium dioxide (TiO₂)
 – Protective coating
 • Applied to film side of the screen to protect it from repeated film loading & unloading
Phosphors
- Converting x rays into light
- Luminescent materials
 - Fluorescence ≤ 1 × 10⁻⁸ s of the excitation
 - Phosphorescence in which light emission can be delayed
 ⇒ Causing "afterglow" ⇒ motion artifact, image lag
- Should be highly x-ray attenuating
 - high Z (so large μ)
- Should emit many light photons for every x-ray photon that is stopped
 - High conversion efficiency
 » A measure of the number of light photons emitted per incident x-ray photon
 » Typ. btwn 5 to 20% depending on the type of phosphor & its thickness
 » ~10³ light photons per incident 50-keV x-ray photon
 » Speed of screen
 » "Faster" if the conversion efficiency is higher
- Calcium tungstate (CaWO₄) discovered by Thomas Edison
- Rare earth phosphors in the late 1970s (terbium-doped gadolinium oxysulfide, Gd₂O₂S:Tb)

Radiographic film
- Optical film to capture the optical image created w/i the screens that sandwich the film
- Common size in US: 14 × 17, 14 × 14, 10 × 12, 8 × 10, & 7 × 17 in.
- Image quality depends on optical properties & details of chemical development

Radiographic cassette
- A holder for two intensifying screens & the film "sandwiched" btwn
- One side "radiolucent", the other "a sheet of lead foil"
X-ray image intensifiers

- XRII in fluoroscopy requires low-dose, real-time projection radiography

![Diagram of X-ray image intensifier](image)

- **Input window**
 - Aluminum or titanium w/ 0.25–0.5 mm thickness
 - \(\Rightarrow \) minimal loss of x-ray photons but capable of holding a vacuum

- **Input phosphor**
 - Typ. CsI(Na) w/ 0.5 mm thickness
 - 15–40 cm in diameter
 - 0.5-mm-thick aluminum reflector

- **Photocathode**
 - Generating free \(e^- \)s w/i the vacuum tube

- **Dynodes**
 - A series of electrodes to accelerate \(e^- \)s
 - Shaping \(e^- \)s into an (inverted) \(e^- \) intensity image
 - Alternating voltage profile to provide variable image magnification

- **Anode**
 - 25–35 kV relative to the cathode
Image Formation

• Basic imaging equation
 Consider a particular line segment thru the object starting at the x-ray origin & ending on the detector plane at point \((x, y)\):

$$I(x, y) = \int_{0}^{E_{\text{max}}} S_{0}(E')E'e^{-\int_{0}^{(x,y)} \mu(\tau, E, x, y) ds} dE'$$

- \(S_{0}(E)\) = the spectrum of the incident x-ray
- \(s\) = distance from x-ray origin to the point \((x, y)\) on the detector plane = \(r\)
Geometric effects

→ Undesirable (“multiplicative”) effects due to the natural x-ray beam divergence

- Inverse square law
 - Dependency of the net flux of photons (i.e., photons per unit area) on \(1/r^2\)
 - Intensity at the origin of the detector assuming no attenuation
 \[I_0 = \frac{I_s}{4\pi d^2} \]
 \(I_s\) = beam intensity [# of photons] integrated over a small sphere surrounding the source
 \(d\) = the source-to-detector distance
 - Intensity at \(r = r(x, y)\) on the detector
 \[I_r = \frac{I_s}{4\pi r^2} \]
 \(I_r < I_0\) because \(r > d\)
 - \(\cos^2\theta\) drop-off of x-ray intensity due to the inverse square law
 \[I_r = \frac{I_s}{4\pi r^2} = \frac{4\pi d^2 I_0}{4\pi r^2} = I_0 \frac{d^2}{r^2} = I_0 \cos^2\theta \]
 ⇒ Resulting in “false” object attenuation in a circular pattern around the detector origin

Example

The inverse square law has a very practical use in radiography. Suppose an acceptable chest radiograph was taken using 30 mAs at 80 kVp from 1 m. Suppose that it was now requested that one be taken at 1.5 m at 80 kVp. What mAs setting should be used to yield the same exposure?
• Obliquity

- Decreasing the beam intensity away from the detector origin when the detector surface is not orthogonal to the direction of x-ray propagation
- Implying that x rays pass through a larger area on the detector
 - Lowering x-ray flux
 - Resulting in a lower measured x-ray intensity on the detector surface

\[I_d = I_0 \cos \theta \]

\(\Leftarrow \) oblique area \(A_d = \frac{A}{\cos \theta} \), where \(A \) = the area orthogonal to the beam direction

• Beam divergence & flat detector

- Reduction in beam intensity due to
 1) The inverse square law effect
 2) Obliquity

\[I_d(x, y) = I_0 \cos^3 \theta \]

• Anode heel effect

- Nonuniform x-ray intensity distribution along the cathode-anode direction, but no variation orthogonal to the cathode-anode direction

\(\Rightarrow \) Stronger intensity in the cathode direction
 - \(~45%\) intensity variation in the cathode-to-anode direction

\(\Rightarrow \) Far outweighing the effects of obliquity & inverse square law (i.e., more important)

\(\Leftarrow \) Compensated by an x-ray filter that is thicker in the cathode direction
Example

Suppose a chest x-ray is taken at 2 yards using 14 inch by 17 inch film. What will be the smallest ratio I_d/I_0 across the film (assuming no object attenuation)?

- **Path length**
 - X-ray intensity at $(x, y) = (0, 0)$:
 $$I_d(0,0) = I_0 e^{-\mu L}$$
 - X-ray intensity at $(x, y) \neq (0, 0)$:
 $$I_d(x, y) = I_0 e^{-\mu L / \cos \theta}$$
 - Considering the $1/r^2$ & obliquity:
 $$I_d(x, y) = I_0 \cos \theta e^{-\mu L / \cos \theta}$$

 ⇒ Causing a shading artifact w/i a homogeneous (attenuation & thickness) object
 ⇒ Misleading as a different attenuation w/i the object or different object thickness
• **Depth-dependent magnification**

 – Consider the “stick” object of height w:

 $\Rightarrow w_z$ on the detector is different depending on the position z of the object in FOV

 $$w_z = w \frac{d}{z} \implies \text{magnification } M(z) = \frac{d}{z}$$

 \rightarrow Different sizes for two object w/ the same size (judgment about relative sizes of anatomical features must be made with caution and knowledge)

 \rightarrow Difficulty in the “longitudinal study” at the same radiographic conditions & patient positioning

 \rightarrow **Depth-dependent** blurring

Example

Consider imaging the rectangular prism defined by $\mu(x, y, z) = \mu_\text{a} \text{rect}(\frac{y}{W}) \text{rect}(\frac{x}{W}) \text{rect}(\frac{z-z_0}{L})$ where $\text{rect}(x) = \begin{cases} 1 & |x| \leq 1/2 \\ 0 & \text{otherwise} \end{cases}$.

How is this rectangular prism portrayed in a radiograph?
• Imaging equation w/ geometric effects
 – Consider an idealized object $t_z(x, y)$:
 • Infinitesimally thin;
 • Located in a single plane z;
 • Capable of differentially attenuating x rays as a function of x & y;
 ⇒ Can be regarded as a transmittivity

$$I_d(x, y) = I_0 \cos^3 \theta e^{-\mu / \cos \theta} \Rightarrow I_0 \cos^3 \theta t_d(x, y) \text{ at } z = d$$

$$\cos \theta = \frac{d}{\sqrt{d^2 + x^2 + y^2}}$$

– Considering the magnification at arbitrary z, where $0 < z \leq d$;

$$I_d(x, y) = I_0 \cos^3 \theta t_d(x/M(z), y/M(z))$$
or

$$I_d(x, y) = I_0 \left(\frac{d}{\sqrt{d^2 + x^2 + y^2}}\right)^3 t_d(\frac{xz}{d}, \frac{yz}{d})$$

⇒ Reasonable approximation only for relatively thin objects that have nearly the same $M(z)$ & no variation in attenuation in the z direction

Blurring effects

Due to “extended” sources & the intensifying screen

• Extended sources (= finite focal spot size)
 ⇒ Fuzziness both at the edge of the FOV & object boundaries

 – Size of a point hole located at range z for the source w/ diameter D;

$$D' = \frac{d - z}{z} D = -\frac{m(z)}{z} D$$

$$m(z) = -\frac{d - z}{z} D = [-M(z) + 1]D$$

» source magnification

» Negative because it inverts the image of the source = $1 - M(z)$
– Source image for the source intensity distribution $s(x, y)$

 \[I_d(x, y) = ks(x/m, y/m) \]

 - $m = \text{the source magnification for a point at range } z$
 - $k = \text{the amplitude scaling term}$

 » $\int \int ks(x/m(z), y/m(z))dx dy = \text{constant}$ (because the integrated intensity on the detector plane must remain constant regardless of the position of the point hole on the z-axis)

 » Fourier transform $\Rightarrow km^2(z)S(0,0) = \text{constant}$

 » $k \propto \frac{1}{m^2(z)}$

 \Rightarrow The amplitude of blurring due to the extended source depends on the location of the object relative to the detector plane

 \[\frac{s(x/m,y/m)}{m^2} \rightarrow S(0,0)\delta(x, y) \text{ as } m(z) \rightarrow 0 \]

 \Rightarrow No loss of resolution or amplitude

– Spatial distribution of attenuating objects w/i a given z plane:

 \[I_d(x, y) = \frac{\cos^2 \theta}{4\pi d^2} s(x/m, y/m) * t_z(x/M, y/M) \]
• Film-screen blurring

Consider an “additional convolution” w/ the film-screen impulse response function $h(x, y)$ assuming that light photons isotropically scatter:

$$I_d(x, y) = \frac{\cos^2 \theta}{4\pi d^2 m^2} s(x/m, y/m) * t_2(x/M, y/M) * h(x, y)$$

– Tradeoff btwn image resolution (or blur) & detector efficiency η
 • $\eta = \text{the fraction of photons captured by the detector on average}$
 $\Rightarrow \sim 0.3$ for CaWO$_4$

• Usually negligible MTF of the film compared w/ the intensifying screen
• Ignoring the image created directly on the film by x rays due to very poor η
 \Rightarrow Only considering the image created by the light produced in the phosphors adjacent the film

X rays captured by the screen \rightarrow converted to light photons & captured by the film \Rightarrow a latent image (i.e., not visible) \rightarrow a blackening of the film

• Characterizing film as a transformation btwn exposure to light & the degree of blackening of film \Rightarrow optical density of the film
• Optical transmittivity = the fraction of light transmitted thru the exposed film
 \[T = \frac{I_t}{I_i} \]
 - \(I_t \) = the irradiation of the transmitted light [energy/area/sec]
 - \(I_i \) = the irradiation of the incident light [energy/area/sec]

• Optical opacity = \(T^{-1} \)

• Optical density = the common logarithm of the optical opacity
 \[D = \log_{10} \frac{I_i}{I_t} \]
 → Characterizing “how black” the film in on a logarithmic scale
 → Usable when \(0.25 \leq D \leq 2.25 \)
 → Best discrimination of shading gray when \(1 < D < 1.5 \)

• H&D (Hurter & Driffield) curve
 - S-shaped curve:
 - Low D toe @ low exposure / “linear” portion / high D shoulder @ high exposure
 - Base fog = non-zero optical density even in the absence of exposure
 - In the linear region:
 - \(D = \Gamma \log_{10} \frac{X}{X_0} \)
 - \(X_0 \) = the exposure when the linear region would hit the horizontal axis (\(D = 0 \))
 - \(\Gamma \) = the slope of the H&D curve in the linear region (\(\Rightarrow \) “contrast”)
 » Called the “film gamma”, typ. 0.5–3
 » \(\Gamma \uparrow \Rightarrow \) contrast ↑ but latitude ↓
 - Latitude = the range of exposures over which the H&D curve is linear (\(\Rightarrow \) “dynamic range”)
 - Speed of film = the inverse of the exposure at which “\(D = 1 + \) fog level”
Noise & Scattering

• Signal-to-noise ratio (SNR)

Consider the detector intensities from a rectangular object assuming unity magnification & infinitesimal source size:

- Local contrast

\[C = \frac{I_t - I_b}{I_b} \]

- Addition of noise due to the random fluctuation in # of photons arriving in each small area of detector
 ⇒ Called “quantum mottle”
 → Responsible for the impression of detector measurements of x-ray intensity
SNR = \frac{I_I - I_b}{\sigma_b} = C \frac{I_b}{\sigma_b}

- X-ray intensity in the number of photons using the effective energy (hν) for polyenergetic beam:
 - \(I = \frac{N hν}{AΔt} \)
- Average background intensity:
 - \(I_b = \frac{N_b hν}{AΔt} \)
- Variance of the number of photons per burst per area \(A \) in the background:
 - \(\sigma_b^2 = N_b \left(\frac{hν}{AΔt} \right)^2 \)

Then, the local SNR:
- \(\text{SNR} = C \sqrt{N_b} = C \sqrt{ΦARtη} \)
 - \(Φ \) = the number of photons per Roentgen per cm²
 - \(A \) = the unit area
 - \(R \) = the body’s radiation exposure in Roentgens
 - \(t \) = the fraction of photons transmitted thru the body
 - \(η \) = the detector efficiency

- How to improve the visibility of a particular structure in a radiograph?
 - Increase the contrast of the structure
 - Change x-ray energy (kVp)
 - Use a contrast agent
 - Use dual-energy techniques
 - Increase the number of photons used in the visualization or analysis
 - Increase mAs
 - Increase x-ray energy (more penetration)
 - Use a large-pixel detector
 - Use a more efficient detector
Quantum efficiency & detective quantum efficiency

- Quantum efficiency
 - Probability that a single photon incident upon the detector will be detected

- Detective quantum efficiency
 - Considering the transformation of SNR from a detector’s input to its output
 - A measure of the degradation in the SNR due to the detection process
 - The fraction of photons that are detected “correctly”
 - DQE ≤ QE ≤ 1
 - DQE = \(\left(\frac{SNR_{out}}{SNR_{in}} \right)^2 \)
 - \(SNR_{in} \) = the intrinsic SNR of the incident radiation
 - \(SNR_{out} \) = the SNR of the measured quantity

Example

Consider a hypothetical detector having QE = 0.5 and the ability to perfectly localize every photon that is stopped by the detector. What is the DQE of this detector?
Example

Suppose that an x-ray tube is set up to fire \(n \) 10,000-photon bursts at a detector and the detector’s output \(x \) is recorded as \(x_i, i = 1, \cdots, n \). Suppose that the mean and variation of \(\{x_i\} \) is found to be \(\bar{x} = 8,000 \) and \(\sigma_x^2 = 40,000 \), respectively. What is the DQE of this detector?

• Compton scattering
 → Resulting in a decrease in image contrast & a decrease in SNR

 – Effect on image contrast

 Recall the local contrast \(C = \frac{l_e - l_b}{l_b} \)

 • Assuming that CS adds a constant intensity \(I_s \) to both target & background intensities

 \[C' = \frac{(l_e + I_s) - (l_b + I_s)}{l_b + I_s} = C \frac{l_b}{l_b + I_s} = C \frac{1}{1 + I_s/I_b} \]

 ⇒ Scatter reduces contrast by the factor \(1/(1 + I_s/I_b) \)

 – \(I_s/I_b \) called “scatter-to-primary ratio”

• SNR w/ scatter

 – \(\text{SNR}' = \frac{l_e - l_b}{\sigma_b} = C \frac{l_b}{\sigma_b} = C \frac{N_b}{\sqrt{N_b + N_z}} = C \frac{\sqrt{N_b}}{\sqrt{1 + N_z/N_b}} \)

 – \(\text{SNR}' = \frac{\text{SNR}}{\sqrt{1 + l_b/l_b}} \)
Example

Suppose 20% of the incident x-ray photons have been scattered in a certain material before they arrive at detectors. What is the scatter-to-primary ratio? By what factor is the SNR degraded?