Quantities for Describing Radiation Interactions

Ho Kyung Kim
hokyung@pusan.ac.kr
Pusan National University
References

Nonstochastic quantities for describing the interactions of the radiation field with matter (in terms of expectation values for the infinitesimal sphere at the point of interest)

1. Kerma K
 - The first step in energy dissipation by indirectly ionizing radiation (i.e., energy transfer to charged particles)

2. Absorbed dose D
 - The energy imparted to matter by all kinds of ionization radiations, but delivered by the charged particles

3. Exposure X
 - X- & γ-ray fields in terms of their ability to ionize air
Kerma

- Relevant only for
 - Fields of indirectly ionizing radiations (e.g., photons or neutrons)
 - Any ionizing radiation source distributed within the absorbing medium

- Energy *transferred*

\[\varepsilon_{tr} = (R_{in})_u - (R_{out})^{nonr}_u + \sum Q \]

- \(\varepsilon_{tr} \) = energy transferred (*stochastic* quantity)
- \((R_{in})_u \) = radiant energy\(^\dagger\) of uncharged particles entering \(V \)
- \((R_{out})^{nonr}_u \) = radiant energy of uncharged particles leaving \(V \), *except* that which originated from radiative losses\(^\ddagger\) of KE by charged particles while in \(V \)
- \(\sum Q \) = net energy derived from rest mass in \(V \)
 - positive when \(\Delta m \downarrow (m \rightarrow E) \)
 - negative when \(\Delta m \uparrow (E \rightarrow m) \)

\(^\dagger\) The energy of particles (excluding rest energy) emitted, transferred, or received

\(^\ddagger\) Conversion of charged-particle KE to photon energy through either bremsstrahlung or *in-flight* annihilation of positrons
\[K \equiv \frac{d\epsilon_{tr}}{dm} \]

- The *expectation* value of the energy transferred to charged particles per unit mass at a point of interest, including radiative-loss energy but excluding energy passed from one charged particle to another
- Simply, the KE received by charged particles in the specified finite volume \(V \)
- The kerma for x- or \(\gamma \)-rays consists of the energy transferred to electrons & positrons per unit mass of medium
- \(1 \) Gy = \(1 \) J/kg = \(10^2 \) rad = \(10^4 \) erg/g

- **For monoenergetic photons**

\[K = \Psi \left(\frac{\mu_{tr}}{\rho} \right)_{E,Z} \]

- \(\frac{\mu_{tr}}{\rho} \) = mass energy-transfer coefficient (depending on \(E \) & \(Z \))
- \(\mu_{tr} \) = linear energy-transfer coefficient
For spectral photons

\[K = \int_0^{E_{\text{max}}} \Psi'(E) \left(\frac{\mu_{\text{tr}}}{\rho} \right)_{E,Z} dE \]

An average value of mass energy-transfer coefficient for the spectrum \(\Psi'(E) \) is given by

\[\left(\frac{\mu_{\text{tr}}}{\rho} \right)_{\Psi'(E),Z} = \frac{K}{\Psi} = \frac{\int_0^{E_{\text{max}}} \Psi'(E) \left(\frac{\mu_{\text{tr}}}{\rho} \right)_{E,Z} dE}{\int_0^{E_{\text{max}}} \Psi'(E) dE} \]

Kerma rate

\[\dot{K} = \frac{dK}{dt} = \frac{d}{dt} \left(\frac{d\epsilon_{\text{tr}}}{dm} \right) \]
Components of kerma

\[K = K_c + K_r \]

- \(K_c \) = kerma due to collision interactions (local or nearby the charged-particle track)
 - Coulomb-force interactions with atomic electrons (ionization & excitation)
- \(K_r \) = kerma due to radiative interactions (remote or far away from the charged-particle track)
 - radiative interactions with the Coulomb force field of atomic nuclei
 - bremsstrahlung, in-flight annihilation

Net energy transferred

\[\epsilon_{tr}^n = (R_{in})_u - (R_{out})_{u nonr} - R_u^r + \sum Q = \epsilon_{tr} - R_u^r \]

- \(R_u^r \) = radiant energy emitted as radiative losses by the charged particles (which themselves originated in \(V \))
Collision kerma

\[K_c = \frac{d\epsilon_{tr}^n}{dm} \]

- The \textit{expectation} value of the \textit{net} energy transferred to charged particles per unit mass at a point of interest, \textit{excluding} both radiative-loss energy and energy passed from one charged particle to another.

Radiative kerma

\[K_r = \frac{dR_{tr}}{dm} \]
For monoenergetic photons

\[K_c = \Psi \left(\frac{\mu_{en}}{\rho} \right)_{E,Z} \]

- \(\frac{\mu_{en}}{\rho} \) = mass energy-absorption coefficient (depending on \(E \) & \(Z \))
 - \(\frac{\mu_{en}}{\rho} \approx \frac{\mu_{tr}}{\rho} \) for low \(Z \) and \(E \) (where radiative losses are small)
- \(\mu_{en} \) = linear energy-absorption coefficient

<table>
<thead>
<tr>
<th>(E_{\gamma}) (MeV)</th>
<th>(\frac{\mu_{tr} - \mu_{en}}{\mu_{tr}} \times 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Z = 6)</td>
</tr>
<tr>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>3.5</td>
</tr>
</tbody>
</table>
Absorbed dose

- Relevant for
 - All types of ionizing radiation fields
 - Any ionizing radiation source distributed within the absorbing medium

- Energy *imparted*

\[\epsilon = (R_{in})_u - (R_{out})_u + (R_{in})_c - (R_{out})_c + \sum Q \]

- \(\epsilon \) = energy imparted (*stochastic* quantity)
- \((R_{out})_u \) = radiant energy of all the uncharged radiation leaving \(V \)
- \((R_{in})_c \) = radiant energy of the charged particles entering \(V \)
- \((R_{out})_c \) = radiant energy of the charged particles leaving \(V \)
- \(\sum Q \) = net energy derived from rest mass in \(V \)
\[D = \frac{d\epsilon}{dm} \]

- The *expectation* value of the energy imparted to matter per unit mass at a point
- The same dimension & units with \(K \)
- Simply, the energy per unit mass to produce any effects attributable to the radiation (the most important quantity in radiological physics)
- Impossible to write a relationship \(D \) and \(\Psi \) of indirect radiation
- 1 Gy = 1 J/kg = 10² rad = 10⁴ erg/g

- **Absorbed dose rate**

\[\dot{D} = \frac{dD}{dt} = \frac{d}{dt} \left(\frac{d\epsilon}{dm} \right) \]
Comparative example 1 of ϵ, ϵ_{tr}, & ϵ_{tr}^n

FIGURE 2.1a. Illustration of the concepts of energy imparted, energy transferred, and net energy transferred for the case of a Compton interaction followed by bremsstrahlung emission (Attix, 1983).

Attix Fig. 2.1a
Comparative example 2 of ϵ, ϵ_{tr}, & ϵ_{tr}^n

FIGURE 2.1b. Example involving γ-ray emission, pair production, and positron annihilation (Attix, 1983).
If the positron in Attix Fig. 2.1b had been annihilated in flight when its remaining KE was T_3, what are the values of ϵ, ϵ_{tr}, & ϵ_{tr}^n?
Exposure

- Nonstochastic quantity defined only for x-ray & γ-ray photons

\[X = \frac{dQ}{dm} \]

- The absolute value of the total charge \(dQ \) of the ions (of one sign) produced in air when all the electrons (negatrons & positrons) liberated by photons in air of mass \(dm \) are completely stopped in air
- The ICRU says that "the ionization arising from the absorption of bremsstrahlung emitted by the electrons is not to be included in \(dQ \)"
 - Also, the radiative losses through in-flight annihilation positrons
- Simply, the ionization equivalent of the \(K_c \) in air for x- & γ-rays
W-value \(\bar{W} \)

- See *Attix 12* for more details
- The mean energy expended in a gas per ion pair formed

\[
\bar{W} = \frac{\sum T_i (1 - g_i)}{\sum N_i (1 - g'_i)}
\]

- All the KE spent by electrons in collision interactions
- All the ion pairs produced in collision interactions by electrons

- \(T_i \) = initial KE of the \(i \)th electron (or positron)
- \(g_i \) = fraction of \(T_i \) that is spent by the particle in radiative interactions along its full path in air
- \(1 - g_i \) = fraction spent in collision interactions
- \(N_i \) = total number of ion pairs that are produced in air by the \(i \)th electron of energy \(T_i \)
- \(g'_i \) = fraction of the ion pairs that are generated by the photons resulting from radiative loss interactions
- \(1 - g'_i \) = fraction of the ion pairs produced by collision interactions that occur along the particle track

- **Not** count the energy going into radiative losses, **nor** the ionization produced by the resulting photons
• eV/ion pair
 – 33.97 eV/ip for x- & γ-rays in air

\[\bar{W}_{air} = \frac{33.97 \text{ eV (or electron)} }{1.602 \times 10^{-19} \text{ C/electron}} \times 1.602 \times 10^{-19} \text{ J/eV} = 33.97 \frac{\text{J}}{\text{eV}} \]

• Constant values for each gas, independent of photon E, for x- & γ-ray energies above a few keV
• Convenient for relating \((K_c)_{air}\) and \(X\)

- Exposure rate

\[\dot{X} = \frac{dX}{dt} \]
X to \(\Psi \)

- **For monoenergetic photons**

 \[
 X = \Psi \left(\frac{\mu_{en}}{\rho} \right)_{E, \text{air}} \left(\frac{e}{W} \right)_{\text{air}} = (K_c)_{\text{air}} \left(\frac{e}{W} \right)_{\text{air}} = \frac{(K_c)_{\text{air}}}{33.97}
 \]

- \(1 \text{ R} = \frac{1 \text{ esu}}{0.001293 \text{ g}} \times \frac{1 \text{ C}}{2.998 \times 10^9 \text{ esu}} \times \frac{10^3 \text{ g}}{1 \text{ kg}} = 2.580 \times 10^{-4} \text{ C/kg} \)

- **Conversion factors**
 - \(X \) (in C/kg) = \(2.58 \times 10^{-4} X \) (in R)
 - \(X \) (in R) = \(3876 X \) (in C/kg)

- **For spectral photons**

 \[
 X = \int_0^{E_{\text{max}}} \Psi'(E) \left(\frac{\mu_{en}}{\rho} \right)_{E, \text{air}} \left(\frac{e}{W} \right)_{\text{air}} \text{ d}E \approx \left(\frac{e}{W} \right)_{\text{air}} \int_0^{E_{\text{max}}} \Psi'(E) \left(\frac{\mu_{en}}{\rho} \right)_{E, \text{air}} \text{ d}E
 \]
Significance of exposure

1. Ψ is proportional to X for any given photon energy or spectrum
2. The measurement of X may estimate the effects of x- or γ-ray in tissue because air is an approximately "tissue-equivalent" material ($Z_{\text{air}} \approx Z_{\text{muscle}}$)
3. The value of K_c in muscle, per unit X, is nearly independent of photon E
4. One can characterize a photon field at a point

FIGURE 2.2a. Ratio of mass energy-absorption coefficients for muscle and water relative to air. [Based on data of Hubble, as given by Evans (1968) for $h\nu > 0.15$ MeV, and by Greening, (1972) for $h\nu \leq 0.15$ MeV.]

FIGURE 2.2b. Ratio of mass energy-absorption coefficients for acrylic plastic and compact bone relative to air. Acrylic plastic ($C\text{H}_2\text{O}_3$) is variously called Lucite, Plexiglas, and Perspex. Data sources as in Fig. 2.2a.
Other quantities for radiation protection

- **Quality factor \(Q \)**
 - *Weighting factor* to provide an estimate of the relative human hazard of different types & energies of ionizing radiations
 - Dimensionless
 - Determined from the experimental *relative biological effectiveness* (RBE) & the *unrestricted linear energy transfer* \((L_\infty) \) or the *collision stopping power*

![Graph showing the relationship between quality factor \(Q \) and collision stopping power in water, as recommended by the ICRP (1971).](Image)
- **Dose equivalent** H

 $$H \equiv DQ$$

 - Defined at a point (i.e., a *point* quantity)
 - Sievert, 1 Sv = 1 J/kg
 - 1 rem = 10^{-2} J/kg (equivalently to "rad")
 - Not strictly a physical quantity

- **Equivalent dose** $H_{T,R}$

 $$H_{T,R} = D_{T,R}w_R$$

 - Equivalent dose in an organ or in tissue T due to radiation R
 - Not a point quantity but an *average* over a tissue or organ
 - $H_T = \sum_R H_{T,R} = \sum_R D_{T,R}w_R$
 - Not a measurable quantity

- **Effective dose**

 $$E = \sum_T H_T w_T$$

 - Not a measurable quantity