Artifacts in CT

Ho Kyung Kim
hokyung@pusan.ac.kr
Pusan National University

Definition

- Artifacts
 - Artificial structures, which deviate from reality, in images
 - Artificially made (Latin: arte factum)
 - Visualization in images as a result of the systematic discrepancy b/w CT# & true atten. coeff.

- What is imaged correctly or artificially produced?
 - Experience
 - Knowledge of the system’s artifact behavior & understanding physics behind it

- Ideality
 - High dose & high photon counts
 - Monochromatic x-ray beam
 - Infinite detector resolution & perfect detectors
 - No motion
 - No scatter
Why in CT?

- CT is \textit{vulnerable} to artifacts
 - Image reconstruction assumes that the measurements are \textit{consistent}
 - (Filtered) backprojection with \textit{inconsistent} measurements results in artifacts

- Artifacts are most pronounced close to the site of their origin, but they can affect the image at greater distances from this site by the physical nature of CT

Monochromatic; homogeneous

\[I(u) = I(0)e^{-\mu_s} \]

Monochromatic; heterogeneous

\[I(u) = I(0)e^{-\int_s \mu(s)ds} \]

Polychromatic; heterogeneous

\[I(u) = \int_{0}^{E_{\text{max}}} I_0(E)e^{-\int_s \mu(E,s)ds} dE \]

\[p(u) = -\ln \frac{I(u)}{I(0)} = \int_s \mu(s)ds \]
Artifact appearance (Types)

- **Streaking**
 - Inconsistency in a single measurement

- **Shading**
 - Group of channels or views deviating gradually from the true measurement

- **Rings**
 - Errors in an individual detector malfunction (or calibration)

- **Distortion**
 - Helical reconstruction

Important causes of CT artifacts

- Patient movement
- Beam hardening
- Scattered radiation
- Partial volume effects
- Metallic implants
- Sampling errors
- Patient exceeding the limits of the field of measurement (FOM)
Category

<table>
<thead>
<tr>
<th>Category</th>
<th>Origination</th>
<th>Symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics-based artifacts</td>
<td>Beam hardening</td>
<td>Cupping</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Streaks</td>
</tr>
<tr>
<td></td>
<td>Partial volume</td>
<td>Cupping</td>
</tr>
<tr>
<td></td>
<td>Photon starvation</td>
<td>Dark band</td>
</tr>
<tr>
<td></td>
<td>Undersampling</td>
<td>Blurring</td>
</tr>
<tr>
<td></td>
<td>Misalignment</td>
<td>Mis-registration</td>
</tr>
<tr>
<td></td>
<td>Object scatter</td>
<td>Cupping</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dark band</td>
</tr>
<tr>
<td>Patient-based artifacts</td>
<td>Dense inserts (Metal artifact)</td>
<td>Streaks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dark band</td>
</tr>
<tr>
<td></td>
<td>Patient motion</td>
<td>Mis-registration</td>
</tr>
<tr>
<td>Scanner-based artifacts</td>
<td>Uncorrected</td>
<td>Ring artifacts</td>
</tr>
<tr>
<td></td>
<td>Helical artifacts</td>
<td>Blurring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Windmill artifacts</td>
</tr>
</tbody>
</table>

Beam hardening

- Attenuation of a broad **polychromatic** x-ray spectrum
 - Energy, object type, projection direction
 - Variable increases in the mean energy of the spectrum
 - μ varies w/ the projection direction, raising inconsistent data
 - e.g. Houndsfield bar (‘hypodense’ dark zones/streaks) b/w the petrous bones
- What happens w/ a **monochromatic** x-ray beam?
- **Cupping artifacts**
 - Attenuation thru thick uniform region

- **Streaks & dark bands**
 - Shown b/w two dense objects in very heterogeneous regions
 - For two diff't directions, less hardened thru one of the objects than thru both objects
 - Usually bony regions & scans w/ a contrast medium
• **Correction**
 - **Filtering**
 - Pre-harden the beam before it passes thru the patient
 - Bowtie filter hardens the edges of the beam, which will pass thru the thinner parts of the patients
 - **Calibration**
 - Capping artifact due to overcorrection (mismatch b/w uniform phantom & patient anatomy)
 - Difficult to correct simultaneously for water, bone, & contrast medium
 - **Iterative correction algorithm**
 - Minimize blurring of the bone/soft tissue interface
 - Reduce the dark bands in nonhomogeneous regions

![Images of CT scans](image)

Partial volume

- **(2D) Transversal** partial volume effect
 - Blurring of the details at the object boundary due to the partial overlap of object structures on the detector elements
 - Nonlinear characteristics
 \[\text{Measurement} - \ln(\alpha l(x_1) + (1 - \alpha)l(x_1)) < -\ln(\alpha l(x_1)) - \ln((1 - \alpha)l(x_1)) \text{ True atten.} \]
 - Underestimate the attenuation ⇒ **inconsistent** measurements for rays passed from object boundaries
 - Sometimes regarded as the sampling artifact

![Graphs and diagrams](image)
- (3D) **Longitudinal** or **axial** partial volume artifacts
 - Restricted slice thickness Δz

 ![CT-slices](image)

 ![axial reconstruction 1](image)
 ![axial reconstruction 2](image)

 ![Streak artifacts](image)

Photon starvation

- **Streaking** artifacts in highly attenuating areas
 - Measurements of insufficient photons, resulting in very noisy projections
 - **Filtered** backprojection magnifies the noise, resulting in streaks in the image

- Correction
 - Tube current modulation
 - Adaptive filtering (software)
 - Smooth the noisy attenuation profile before recon

 ![Low mA](image)
 ![High mA](image)

 ![Noisy due to insufficient photon statistics](image)
Noisy sonogram (i.e. inconsistent measurement) gives rise to streaks

- FBP with inconsistent projection values due to scattered radiation results in streak artifacts
 - Scatter contribution to the measured intensity profile contains very little high-spatial frequencies
 - Attenuation of a particular beam is underestimated due to the scattered photons

Scatter

Mobile CT scanner Philips Tomoscan M
Undersampling

- Misregistration of information relating to sharp edges & small objects
- View aliasing
 - Fine stripes radiating from the edge of (but a distance from) a dense structure
 - Due to not enough view samples (i.e. the number of projections) per rotation

Ray aliasing

- Stripes & ringing close to the structure sharp edges
 - Badly approximated sharp edge in a projection
 - High-frequency damped oscillation around the edge
 - Backprojection along the line tangent to the edge in the image (aliasing artifacts)
- Due to not enough detector samples (i.e. the number of detector elements) per projection
 - Quarter-detector shift
 - Flying focal spot
Metal artifacts

- **Polychromatic** x-ray beam-hardening effect due to metals
 - \[PE \propto \frac{Z^4}{E^3} \]
 - Incomplete attenuation profiles
 - Overranging in sinogram
- (Plus) Higher SPR, causing a lower SNR in the metal shadow
- (Plus) Partial volume effect (due to sharp-edged metal implant objects)
- (Plus) Aliasing
- (Plus) FBP
 - Inconsistencies in the integral attenuation values appear along the respective x-ray path of the backprojection under the diverse angles

- Limitation of the *interpolation* correction
 - Remove streaking distant from the metal
 - Remain a loss of detail around metal-tissue interface (regions of diagnostic interest)

- Statistical reconstruction
 - System matrix that models the physical x-ray absorption process
 - Each row represents a *weighted* single x-ray beam running through the measurement volume
 - A priori knowledge of the statistical distribution of photon counts
Motion artifacts

- Misregistration artifacts
- (2D) Streaks, blurring (shading), and ghost images in FBP due to inconsistencies in the raw data

- Streaks b/w high contrast edges & x-ray tube position
- (3D) Mismatch of the size and position of objects in consecutive slices

Truncation

- Incomplete projections
- Incomplete information relating to the field of measurement (FOM) & streaking or shading artifacts

The patient's arms down but outside the scanning field: Their presence in some views during scanning leads to severe streaking artifacts
Electronic artifacts

- Circular ring artifacts due to a detector channel failure (defective/miscalibrated channels)
 - Outside the tangent circle: defective image due to reconstruction artifacts
 - Inside the tangent circle: almost artifact-free
- **Noise**
 - Poisson noise due to the statistical error of low photon counts
 - Random thin bright & dark streaks along the direction of greatest attenuation
 - $\sigma_{\text{Poisson}} \propto \sqrt{1/(\Delta z \times \text{mAs})}$, but tradeoff b/w noise & resolution

Pelvic CT

Head CT

Modified W/L setting

60 mA, 120 kVp, $\Delta z = 5 \text{ mm}$

440 mA (x7.3 higher dose & x2.7 less noise)
Model-based iterative reconstruction

- Find the most probable image given:
 - Relationship b/w the image & the projection data
 - Prior distribution images (often assuming smoother images are more probable)

- Optimization problem
 - With noisy projection data, there is a wide range of different images that are consistent w/ the measured projection data
 - Prior distribution of images directs the iterative reconstruction to pick a smoother image out of the range of possible images

- Key role of MBIR is to attempt to generate a smooth image while preserving edges
 - Tradeoff b/w smoothness & edge-preservation

- Noise & image quality are decoupled:
 - As the dose is reduced, the noise increases only slightly, but resolution worsens!
 - New artifacts may be introduced at very low dose levels; different noise texture from the FBP
 - Called a "plastic" appearance
Cone-beam effect

- Similar to the artifacts by longitudinal partial volume
- More pronounced for the outer detector rows
- Worse with increasing cone angle

More about beam hardening & scatter

- **Beam hardening** & scatter are different mechanisms that both produce dark streaks between two high attenuation objects, such as metal, bone, & contrast medium
- They can also produce dark streaks along the long axis of a single high attenuation object
- For highly attenuated x-ray beams, beam hardening & scatter both cause more photons to be detected than expected, resulting in dark streaks along the lines of greatest attenuation
- **High-pass filter** (in FBP) exaggerates differences between adjacent detector elements, producing bright streaks in other directions
- **DE-CT** can reduce beam hardening, but not scatter
Flat-panel CBCT

- Dedicated applications
 - Intervention, maxillofacial exams, breast, small-animal imaging
- Characterized by a demand for high spatial resolution
- Limitations
 - Low frame rates
 - Small FOM ($\phi < 25$ cm)
 - Inhomogeneities in periphery
 - Low dose efficiency (i.e. DQE) & dynamic range of flat-panel detectors
 - Poor soft-tissue contrast (& other image qualities)

- CBCT with an FPD with the performance of isotropic spatial resolution (0.14 mm)

 Spherical tumor phantom with a radius of 2 mm

 Focal spot of 0.4 mm; pixel pitch of 0.184 mm
- Typical-parameter comparison

<table>
<thead>
<tr>
<th></th>
<th>MDCT</th>
<th>CBCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube voltage</td>
<td>80–140 kVp</td>
<td>50–125 kVp</td>
</tr>
<tr>
<td>Tube current</td>
<td>10–1000 mA</td>
<td>10–1000 mA</td>
</tr>
<tr>
<td>X-ray power</td>
<td>20–120 kW</td>
<td>10–80 kW</td>
</tr>
<tr>
<td>Focal-spot size</td>
<td>0.6–1.2 mm</td>
<td>0.3–0.8 mm</td>
</tr>
<tr>
<td>Rotation time</td>
<td>0.27–1 s</td>
<td>5–20 s</td>
</tr>
<tr>
<td>Detector elements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>in fan direction</td>
<td>512–1024</td>
<td>512–2500</td>
</tr>
<tr>
<td>in z-direction</td>
<td>64</td>
<td>512–2500</td>
</tr>
<tr>
<td>Field of measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>in fan direction</td>
<td>500 mm</td>
<td>100–250 mm</td>
</tr>
<tr>
<td>in z-direction</td>
<td>40 mm</td>
<td>100–250 mm</td>
</tr>
<tr>
<td>Min. slice thickness</td>
<td>0.5–0.7 mm</td>
<td>0.1–0.3 mm</td>
</tr>
<tr>
<td>Scintillator/Thickness</td>
<td>Gd₂O₂S/1.0–1.4 mm</td>
<td>CsI:Tl/0.4–0.8 mm</td>
</tr>
<tr>
<td>Data rate</td>
<td>≤ 1,000 MB/s</td>
<td>≤ 60 MB/s</td>
</tr>
<tr>
<td>Projection rate</td>
<td>1,000–5,000 fps</td>
<td>5–80 fps</td>
</tr>
</tbody>
</table>

- Is it true that the dose used in dental CBCT is lower than clinical CT?

Homogeneity test

Low-contrast resolution test

Spatial resolution test
- Metal artifact reduction w/ the improvement of low-contrast visibility close to the implant.

Interventional imaging

Intraoperative imaging

- Scatter
- Truncation
- Misalignment
- Short-scan approach using a smaller detector w/ offset to the isocenter
 - Central region: 2π scan
 - Peripheral region: $\pi + \phi$
 - Ring artifact due to the abrupt transition b/w the two regions

- Cone-beam divergence
 - Aliasing (undersampling) artifact as appeared as line patterns

Line patterns diverging from the center towards the periphery
MBIR

Image = arg max \(L(p, Ax) - \beta R(x) \)

Statistical, ML: \(L(p, Ax) = \ln p(x) \)
Data fidelity, LS or WLS: \(L(p, Ax) = \|Ax - p\|^2 \)

\[R(x) = \sum_j \sum_k \psi(x_j - x_k) \]

Penalty strength
Penalty or prior ('regularization')
Measured projections

FBP Siemens SAFIRE